صور الصفحة
PDF

Lambert. Insigniores Orbitae Cometarum Proprietates. 8vo. Aug. 1765. Laplace. Mécanique Céleste, t. i. 1799; t. ii. 1799; t. iii. 1802; t. iv. 1805; t. v. 1823.

. Mémoire sur le développement de l'anomalie vraie et du rayon

vecteur elliptique en séries ordonnées suivant les puissances de l'excentricité. Mém. de l'Inst. t. vi. (1823) pp. 63-80.

Lefort. Expressions numériques des intégrales définies qui se présentent quand on cherche les termes généraux des développements des coordonnés d'un planète dans son mouvement elliptique. Liouv. t. xi. pp. 142-152(1846).

Legendre. Exercices de Calcul Intégrale, t. ii. (containing the dynamical applications) 1817.

. Traité des Fonctions Elliptiques, t. i. (1825) (but the dynamical

applications are for the most part reproduced from the Exercices).

Leverrier. Annales de l'Observatoire do Paris, t. i. (1855).

Lexell. Theoremata nonnulla generalia do translatione corporum rigidorum. Nov. Comm. Petrop. t. xx. (1775) pp. 239-270.

Lionville. Sur l'intégrale f"cos i («—xain w) du. Liouv. t. vi. pp. 36-37 • (1841). 0

. Extrait d'un mémoire sur un cas particulier du problème de trois

. corps. Liouv. t. vii. pp. 110-113 (1842).

. Sur quelques cas particuliers où les équations du mouvement d'un

point matériel peuvent l'intégrer. 3 Memoirs. Liouv. t. xi. pp. 345-379

(1846), t. xii. pp. 410-44 (1847), and t. xiv. pp. 257-300 (1849). . Mémoire sur un cas particulier du problème de trois corps. Conn.

des Temps for 1845, and Liouv. t. i. (2 sér.) pp. 248-256 (1842). - Note ajoutée au mémoire de M. Serret (two revolving centres).

Liouv. t. xiii. pp. 34-37 (1848). Lottner. Keduction der Bewegung eines schweren um einen festen Punct

rotirenden Revolutions-Kôrpers auf die elliptischen Transcendenten.

Crelle, t. L pp. 111-125 (1855). . Zur Théorie des Foucaultechen Pendelversuchs. Crelle, t. Iii. pp.

52^58 (1856). Maccullagh, see Haughton.

Mobius. Ueber die Zusammensetzung unendlich kleiner Drehungen. Crelle,

t. xviii. pp. 189-212 (1838).

. Der barycentrische Calcul. 8vo. Leipzig, 1827.

. Lehrbuch der Statik. 8vo. Leipzig, 1837.

. Die Elemente der Mechanik des Himmels. 8vo. Leipzig, 1843.

Newton (Sir Isaac). Philosophise Naturalis Principia Mathematica. 4to.

London, 1687.

Pagani. Démonstration d'un théorème de Lambert. Crelle, t. xv. pp. 350352 (1834).

. Mémoire sur l'équilibre d'un corps solide suspendu à un cordon

flexible. Crelle, t. xxix. pp. 185-204 (1839). Pain vin. Recherches du dernier multiplicateur pour deux formes spéciales

et remarquables des équations différentielles du problème de trois corps.

Liouv. t. xix. pp. 88-111 (1854).
Poinsot. Mémoire sur la rotation. Extrait, 8vo. Paris, 1834.

Poinsot. Théorie nouvelle de la rotation des corps. Liouv. t. xvi. pp. 9

130 & 289-236 (1851).

. Théorie des cônes circulaires roulants. Liouv. t. xviii. pp. 41-70

(1853).

. Questions dynamiques sur la percussion des corps. Liouv. t. ii.

(2 sér.) pp. 281-329 (1859). Poisson. Traité de Mécanique. 1 ed. Paris, 1811; 2 ed. Paris, 1833. . Mémoire sur un cas particulier du mouvement de rotation des

corps graves. Journ. Polyt. t. ix. (cah. 16) pp. 247-262 (1813). . Sur une nouvelle manière d'exprimer les coordonnés des planètes

dans le mouvement elliptique. Conn, des Temps for 1825, pp. 379-386. . Sur la développement des coordonnés d'une planète dans son

mouvement elliptique et de la fonction perturbative de ce mouvement.

Conn, des Temps for 1836, pp. 3-31. . Mémoire sur le mouvement d'un corps solide (read 1834). Mém.

de l'Inst. t. xiv. pp. 275-432 (1838). . Sur le mouvement des projectiles en ayant égard à la rotation de

la terre. Journ. Polyt. t. xvi. pp. 1-68 (1838). . Mémoire sur le mouvement des projectiles dans l'air, en ayant

égard à leur rotation. Journ. Polyt. pp. 69-176 (1838). Prony. Analyse détaillée des différentes questions qui se rapportent au

mouvement d'un corps sollicité par des puissances quelconques. Journ.

Polyt. t. iv. (cah. 11) pp. 87-143 (1802). Puiseux. Note sur le mouvement d'un point matériel pesant sur une sphère.

Liouv. t. vii. pp. 517-520 (1842). . Du mouvement d'un solide de révolution posé sur un plan horizontal. Liouv. t. xiii. pp. 249-256 (1848). . Sur la convergence des séries qui se présentent dans la théorie du

mouvement elliptique des planètes. liouv. t. xiv. pp. 33-39 (1849). . Seconde Note sur la convergence des séries du mouvement elliptique. Liouv. t. xiv. pp. 247-248 (1849). . Solution de quelques questions relatives au mouvement d'un corps

solide pesant posé sur un plan horizontal. Liouv. t. xvii. pp. 1-30 (1852). . Sur la convergence des séries ordonnées suivant les puissances de

l'excentricité qui se présentent dans la théorie du mouvement elliptique. . Méc. Anal. 3 ed. t. ii. (Note I.) pp. 313-317 (1855). Quet. Des mouvements relatifs en général, et spécialement des mouvements

relatifs sur la terre. Liouv. t. xviii. pp. 213-298 (1853). Eichelot. Bomerkung iiber einen Fall der Bewegung eines systems von

materiellen Puncten. Crelle, t. xl. pp. 178-182 (1850). . Auszug eines Schreibens am Herm Prof. Jacobi. Crelle, t. xlii.

pp. 32-34 (1851).

. Bemerkungen zur Théorie des Raumpendels. Crelle, t. xlii. pp.

233-238 (1853).

. Eine neue Losung des Problems der Rotation eines festen Kôrpers

um einen Punct. (Auszug einer zu Berlin, 1851, erschienenen Schrift.) Crelle, t. xliv. pp. 60-65.

Rodrigues. Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnés provenants de ces déplacements considérées indépendamment des causes qui peuvent les produire. Liouv. t. iii. pp. 380-440 (1840).

Kueb. Specimen inaugurale de motu gyratorio corporis rigidi nullâ vi accélératrice sollicitati. Utrecht, 1834.

Schellbach. Mathematische Miszellen. No. I.-IY. Ueber die Bewegung eines Puncts der von cinem festen Puncte angezogen wird. Crelle, t. xlv. pp. 255-266 (1853).

Schubert. Astronomie Théorique. 4to. St. Pét. (1822).

Segner. Specimen théorise turbinum. 4to. Hnlœ, 1755.

Serret. Thèse sur le mouvement d'un point attiré par deux centres fixes en raison inverse du carré des distances. Liouv. t. xiii. pp. 17-33 (1848).

. . Sur la solution particulière que peut admettre le problème du

mouvement d'un corps attiré vers deux centres fixes par des forces réciproquement proportionnelles aux carrés des^distances. Note iii. to t. ii. of the 3rd ed. of the Méc. Anal. pp. 327-331 (1855).

Sohncke. Motus corporum ccelestium in medio resistente. Crelle, t. x. pp. 23-40 (1833).

Somoff. Démonstration des formules de M. Jacobi relatives à la théorie de la rotation d'un corps solide. Crelle, t. xlii. pp. 95-116 (1851).

Stader. De orbitis et motibus puncti cujusdam corporei circa centrum attractivum aliisquam Neutonianâ attractionis legibus sollicitati. Crelle, t. xlvi. pp. 262-327 (1852).

Steichen. De la propriété fondamentale du mouvement cycloidal, et de sa liaison avec le principe de la composition des mouvements de rotation autour des axes parallèles et des axes qui se coupent. Crelle, t. xlvi. pp. 24-42 (1853).

. . Mémoire sur la question réciproque du centre de percussion. Crelle,

t. xlviii. pp. 1-68 (1854). . Mémoire de Mécanique relatif au mouvement de rotation et au

mouvement naissant des corps solides. Crelle, t. xliii. pp. 161-244 (1852),

and Addition do. t. xliv. pp. 43-46 (1853). Sylvester. Sur l'involution des lignes droites dans l'espace considérées comme

des axes de rotation. Comptes Eendus, t. Iii. (1861) p. 741. . Note sur l'involution de six lignes dans l'espace. Comptes Rendus,

t. Iii. (1861) p. 815. Thomson. On the principal axes of a solid body. C. & D. M. J. t. i.

pp. 127-133 & 195-206 (1846). Tissot. Thèse de Mécanique. Liouv. t. xvii. pp. 88-116 (1852). Townsend. On the principal axes of a solid body, their moments of inertia

and distribution in space. C. & D. M. J. t. i. pp. 209-227, and t. ii. pp.

19-42,140-171 & 241-251 (1846-47). Walton. Instantaneous lines and planes in a body revolving round a fixed

point. C. & D. M. J. t. vii. pp. 111-113 (1852). Whewell. A Treatise on Dynamics. 1 ed. Cambridge, 1823. Worms. The Earth and its Mechanism—being an account of the various

proofs of the rotation of the Earth, with a description of the instruments

used in the experimental demonstrations: to which is added the theory of

Poucault's Pendulum and Gyroscope. 8vo. London, 1862.

Report on Double Refraction. ByG.G.STOKBS^.A^D.C.L.fSec.R.S., Lucasian Professor of Mathematics in the University of Cambridge.

I Regret to say that in consequence of other occupations the materials for a complete report on Physical Optics, which the British Association have requested me to prepare, are not yet collected and digested. Meanwhile, instead of requesting longer time for preparation, I have thought it would be well to take up a single branch of the subject, and offer a report on that alone. I have accordingly taken the subject of double refraction, having mainly in view a consideration of the various dynamical theories which have been advanced to account for the phenomenon on the principle of transversal vibrations, and an indication of the experimental measurements which seem to me most needed to advance this branch of optical science. As the greater part of what has been done towards placing the theory of double refraction on a rigorous dynamical basis is subsequent to the date of Dr. Lloyd's admirable report on "Physical Optics," I have thought it best to take a review of the whole subject, though at the risk of repeating a little of what is already contained in that report.

The celebrated theory of Fresnel was defective in rigour in two respects, as Fresnel himself clearly perceived. The first is that the expression for the force of restitution is obtained on the supposition of the absolute displacement of a molecule, whereas in undulations of all kinds the forces of restitution with which we are concerned are those due to relative displacements. Fresnel endeavoured to show, by reasoning professedly only probable, that while the magnitude of the force of restitution is altered in passing from absolute to relative displacements, the law of the force as to its dependence on the direction of vibration remains the same. The other point relates to the neglect of the component of the force in a direction perpendicular to the front of a wave. In the state of things supposed in the calculation of the forces of restitution called into play by absolute displacements, there is no immediate recognition of a wave at all, and a molecule is supposed to be as free to move in one direction as in another. But a displacement in a direction perpendicular to tho front of a wave would call into play new forces of restitution having a resultant not in general in the direction of displacement; so that even the component of the force of restitution in a direction parallel to the front of a wave would have an expression altogether different from that determined by the theory of Fresnel. But the absolute displacements are only considered for the sake of obtaining results to be afterwards applied to relative displacements; and Fresnel distinctly makes the supposition that the ether is incompressible, or at least is sensibly so under the action of forces comparable with those with which we are concerned in the propagation of light. This supposition removes the difficulty; and though it increases the number of hypotheses as to the existing state of things, it cannot be objected to in point of rigour, unless it be that a demonstration might be required that incompressibility is not inconsistent with the assumed constitution of the ether, according to which it is regarded as consisting of distinct material points, symmetrically arranged, and acting on one another with forces depending, for a given pair, only on the distance. Hence the neglect of the force perpendicular to the fronts of the waves is not so much a new defect of rigour, as the former defect appearing under a new aspect.

I have mentioned these points because sometimes they are slurred over, and Fresnel's theory spoken of as if it had been rigorous throughout, to the injury of students and the retardation of the real progress of science; and sometimes, on the other hand, the grand advance made by Fresnel is depreciated on account of his theory not being everywhere perfectly rigorous. If we reflect on the state of the subject as Fresnel found it, and as he left it, the wonder is, not that he failed to give a rigorous dynamical theory, but that a single mind was capable of effecting so much.

The first deduction of the laws of double refraction, or at least of an approximation to the true laws, from a rigorous theory is due to Cauchy*, though Neumann t independently, and almost simultaneously, arrived at the same results. In the theory of Cauchy and Neumann the ether is supposed to consist of distinct particles, regarded as material points, acting on one another by forces in the line joining them which vary as some function of the distances, and the arrangement of these particles is supposed to be different in different directions. The medium is further supposed to possess three rectangular planes of symmetry, the double refraction of crystals, so far as has been observed, being symmetrical with respect to three such planes. The equations of motion of the medium are deduced by a method similar to that employed by Navier in the case of an isotropic medium. The equations arrived at by Cauchy, the medium being referred to planes of symmetry, contain nine arbitrary constants, three of which express the pressures in the principal directions in the state of equilibrium. Those employed by Neumann contain only six such constants, the medium in its natural state being supposed free from pressure.

In the theory of double refraction, whatever be the particular dynamical conditions assumed, everything is reduced to the determination of the velocity of propagation of a plane wave propagated in any given direction, and the mode of vibration of the particles in such a wave which must exist in order that the wave may be propagated with a unique velocity. In the theory of Cauchy now under consideration, the direction of vibration and the reciprocal of the velocity of propagation are given in direction and magnitude respectively by the principal axes of a certain ellipsoid, the equation of which contains the nine arbitrary constants, and likewise the direction-cosines of the wave-normal. Cauchy adduces reasons for supposing that the three constants G, H, I, which express the pressures in the state of equilibrium, vanish, which leaves only six constants. For waves perpendicular to the principal axes, the squared velocities of propagation and the corresponding directions of vibration are given by the following Table:—

[table]

For waves in these directions, then, the vibrations are either wholly normal or wholly transversal. The latter are those with which we have to deal in the theory of light. Now, according to observation, in any one of the prin- . cipal planes of a doubly refracting crystal, that ray which is polarized in the principal plane obeys the ordinary law of refraction. In order therefore that the conclusions of this theory should at all agree with observation, we must

* Meraoirca do 1'Academic, torn. x. p. 293

+ PoggeudorfTs Annalcn, vol. xxv. p. 418 (1832).

« السابقةمتابعة »