صور الصفحة
PDF
النشر الإلكتروني

greater than 60. Milk is the lacteal secretion obtained by the complete milking of one or more healthy cows, properly fed and kept, excluding that obtained within 15 days before and 5 days after calving. Standard milk is milk containing not less than 12% of total solids and not less than 84% of solids not fat, nor less than 3% of milk-fat. Standard skim-milk is skim-milk containing not less than 94% of milk-solids. Standard condensed milk and standard sweetened condensed milk are condensed milk and sweetened condensed milk respectively, containing no less than 28% of milk-solids, of which not less than one-fourth is milk-fat. Standard milk-fat or butter-fat has a Reichert-Meissl number not less than 24 and a specific gravity at 40° C. not less than 0.905. Standard butter is butter containing not less than 82.5 % of butter-fat. Standard whole-milk cheese is cheese containing in the water-free substance not less than 50% of butter-fat. Standard sugar contains at least 99.5% of sucrose. Standard chocolate is chocolate containing not more than 3% of ash insoluble in water, 3.5 % of crude fibre, and 9% of starch, nor less than 45 % of cocoa-fat."

Numerous other standards with details too technical for reproduction here have also been fixed.

German Empire.-The law of the 14th of May 1879, largely based upon the English Food and Drugs Act 1875, regulates the trade in food. Each town or district appoints a public analyst, and there is a state laboratory in Berlin directly under the control of the ministry of the interior with advisory functions. The ministry, under the advice of this department, issues from time to time regulations concerning the sale of or details specifying the mode of analysis of various products of food or drink. Both in the United States and in Germany, therefore, the executive officers (public analysts) have some authoritative official department for guidance and information.

PARTICULAR ARTICLES ADULTERATED

We will now proceed to consider adulteration as practised during recent years in the more important articles of food. Milk.-Milk adulteration means in modern times either addition of water, abstraction of cream, or both, or addition of chemical preservative. The old stories of the use of chalk or of sheep's brains are fables. Owing to the wide variation to which milk is naturally subjected in composition, it is exceedingly difficult to establish beyond doubt whether any given sample is in the state in which it came from the cow or has been impoverished. The composition of cow's milk varies with many conditions. (1) The race of the animal: the large cows of the plains yielding a great quantity of poor milk, the smaller cows from hilly districts less amount of rich milk. Hence, milk from Dutch cows compares very unfavourably with that of Jerseys or short-horns. Watery and acid foods like mangolds and brewers' grains produce a more aqueous milk than do albuminous and fatty foods like oil-cakes. (2) Sudden change of food, of weather and of temperature. (3) Nervous disturbances to which even a cow is subject, as, for instance, at shows, may greatly influence the composition of the milk. The portion obtained at the beginning of a milking is poorer in fat than that yielded towards the end. Morning milk is as a rule poorer in fat than evening milk. Soon after calving the animal gives a richer product than at later periods, both the quantity and the composition declining towards the end of the lactation. The variations due to these different circumstances may be very great, as is seen from the following analyses, fairly representing the maximum, minimum and mean composition of the milk of single

[blocks in formation]
[ocr errors]

non

In market milk such wide variations are not so liable to occur, as the milk from one animal tends to average that from another, but even in the milk from herds of cows the variations may be considerable. The average composition of genuine milk supplied by one of the largest dairy companies in London, as established by the analysis of 120,000 separate samples recorded by Dr P. Vieth, is fat 4.1%, other milk solids ("solids not fat" or fatty solids ") 8.8%, total dissolved matters (total solids) 12.9%, the variations being from 3.6 to 4.6% in the fat and 8.6 to 9.1 % in the solids not fat. It is clear that the 4.6 % of fat could be reduced, by skimming, to 3.0 %, and the 9.1 % of solids not fat to 8.5 % by addition of water, without bringing the composition of the milk thus adulterated outside that of genuine milk. In reality even wider limits of variation must be reckoned with, because small farmers sell the milk of single cows, and this, as shown above, may fluctuate enormously. The Board of Agriculture, in pursuance of the powers conferred upon it by the Food Act 1899, issued in 1901 "The Sale of Milk Regulations," which provide that where a sample of milk (not being milk sold as skimmed or separated or condensed milk) contains less than 3% of milk-fat, or less than 8.5 % of non-fatty solids, it shall be presumed, until the contrary is proved, that the milk is not genuine. But even in these cases it is open to the vendor to show, if he can, that the deficiency was due to natural causes or to unavoidable circumstances. The courts have held that when deviations are the result of negligence or ignorance the vendor is nevertheless liable to punishment. Thus, when a vendor omits to stir up the contents of a pan so as to prevent the cream from rising to the top, he may be punished, if by such omission the milk becomes altered in composition so as no longer to comply with the regulations; or, when a farmer allows an undue interval between the milkings whereby the composition of the milk may be affected, he may be liable for the consequences. As the limits embodied in the milk regulations were necessarily fixed at figures lower than those which are usually afforded by genuine milk, and as it is a comparatively simple matter to ascertain the percentage of fatty and non-fatty solids, a strong tendency exists to bring down commercial milk to the low limits of the regulations without coming into collision with the law. The fat of milk is its most valuable and most important constituent. The exact determination of the percentage of fat is therefore the chief problem of the milk-analyst. All analyses made prior to the year 1885 are more or less inexact, because a complete separation of the fat from the other milk constituents had rot been obtained. In that year M. A. Adams, by the simple and ingenious expedient of spreading a known volume of the milk to be analysed upon a strip of blotting-paper and extracting the paper, together with the dried milk, by a fat solvent, such as ether or benzene, succeeded in completely removing the fat from the other constituents. Since that time simpler and more rapid means have been based upon centrifugal separation of the fat. When a measured quantity of milk is mixed with strong sulphuric acid, which dissolves the cascin and other nitrogenous constituents of the milk, but leaves the fat-globules quite untouched, the latter can easily be separated in a centrifugal, in the form of an oil the volume of which can be ascertained in a suitably constructed and graduated glass vessel, and thus the percentage ascertained very rapidly and accurately; such centrifugal contrivances constructed by H. Leffman, N. Gerber and others are now in general use in dairies, and cheese and butter factories. The amount of "total solids " contained in milk, that is to say, of all constituents other than water, is speedily ascertained by evaporating the water from a measured or weighed portion of milk and drying the residue obtained in a water-oven to constant weight. By subtracting from the percentage of total solids that of the fat the amount of "solids not fat results, and by cautiously burning off the organic substances, the salts or mineral matters are left. When the percentage of "solids not fat" is less than 8.5 a simple proportion sum suffices to show what percentage of water must be present to reduce the "solids not fat " to the amount found. As the added water also reduces proportionately the percentage of mineral matter natural

to normal milk (about 0.71 to 0.73%), the determination of the | be done by churning, by which operation the milk-globules are ash affords valuable assistance to the analyst. When the amount of ash is higher than normal, tests must be made for borax, soda or other mineral matters that are often added as preservatives or acid neutralizers. Borax is easily tested for by dissolving the milk ash in a drop or two of dilute hydrochloric acid, moistening a strip of yellow turmeric paper with the solution and drying it, when, in the presence of even very minute quantities of borax, the yellow colouring matter of the turmeric paper will be changed into a brilliant red-brown. Formaldehyde (which in 40% water solution forms the formalin of commerce) in milk affords a bright purple colour when the milk containing it is mixed with sulphuric acid containing a trace of an iron salt.

Condensed milk is milk that has been evaporated under reduced pressure with or without the addition of sugar. Generally one part of condensed milk corresponds to three parts of the original milk. There is no case on record of adulteration of unsweetened condensed milk, but sweetened milk has in the past been frequently prepared either from machine-skimmed or partly skimmed milk and sold as whole-milk. As sweetened condensed milk is largely used by the poorer part of the population for the feeding of infants, and as the fat of milk is, as stated before, its most valuable constituent, this class of fraud was a particularly mischievous one, and led to the inclusion in the Food Act of 1899 of a special proviso that every tin or other receptacle containing condensed, separated or skimmed milk must bear a conspicuous label showing the nature of the contents. As the bulk of condensed milk consumed in England is imported from abroad, the customs authorities now exercise a strict supervision over the imports, and object to the importation of such condensed milk as contains less than 9% of milk-fat. The average composition of sweetened condensed milk may be taken, with slight variations, to be: water 24.6%, fat 11.4%, casein and albumen 10%, milk-sugar 11.7%, cane-sugar 40.3%, mineral matters 2.0%.

Cream. There are not any regulations nor official standards relating to this article, the value of which depends upon its contents in fat. Good stiff cream obtained by centrifugal skimming may contain as much as 60% of milk-fat, but generally dairymen's cream has only about 40%. On the other hand, milk that is abnormally rich in fat is in some places sold as cream. Attempts to compel dairymen to work up to any stated minimum of fat have failed, the English courts holding that cream is not an article that has any standard of quality, but varies with the character of the cows from which the milk is obtained and the food on which they are fed. Therefore, as regards the most important portion of cream, the amount of fat, adulteration does not exist unless there is a substitution for the milk-fat by an emulsified foreign fat, but cases of this description are exceedingly rare. On the other hand, such additions of fcreign materials, like starch paste or gelatine, which have for object the giving of an appearance of richness to a naturally poor and dilute article, are not uncommon. While formerly the sale of cream was entirely in the hands of milkmen, there has been of late a tendency to regard cream as an article coming within the range of grocery goods. To enable this perishable article to be kept in a grocery store it has to receive an addition of preservative, as a rule boric preservative, in excessive amount. The purchaser may take it that all cream sold by others than milkmen, and much of that even, is thus preserved and should be shunned. The limit of boric preservative that might be permitted, but which is nearly always exceeded, is one-quarter of 1%.

Butter. Of all articles of food butter has most fully received the attention of the sophisticator, because it is the most costly of the ordinary articles of diet, and because its composition is so intricate and variable that its analysis presents extraordinary difficulties and its nature exceptional and various opportunities for admixture with foreign substances. It is the intention of the producer of butter to separate the fatty portion of the milk as completely as is practicable from the other constituents of the milk without destroying the fat lobules. This can only

[ocr errors]

caused more or less to adhere to each other without losing their individual existence. Owing to this subdivision of the fat, and perhaps to the composition of the fat itself, butter is a more digestible fatty article of food than lard or oil. It is not possible by mechanical means to remove the whole of the water and curd of the milk from the butter; indeed "overworking" the butter with the object of removing the water as completely as possible ruins the structure to such an extent as to make the product unmerchantable. In well-made butter there are contained about 85% of pure milk-fat, from 12 to 13% of water, and 2 or 3% of curd and albumen, milk-sugar or its product of transformation— lactic acid, and phosphates and other milk-salts. In some kinds of butter, Russian for instance, the percentage of water is rather less. Generally, by churning at a low temperature, a drier, at higher temperatures a wetter, butter is obtained. The curd must be got rid of as completely as practicable if the product is to have reasonable keeping properties. To prevent rapid decomposition salt in various quantities is added. Considering that 100 lb (10 gallons) of milk yield only from 3 to 4 lb of properly made butter, it is obvious that a great inducement exists to increase the yield either by leaving an undue proportion of water or curd, or by adding an excessive quantity of salt. In some parts of Ireland the butter is worked up with warm brine into so-called pickle butter, whereby it becomes both watered and salted in one operation. Until lately, when the English Board of Agriculture fixed a limit of 16 for the percentage of water that may legitimately be present in butter, this kind of debasement could not easily be dealt with, but even now, where a legal water-limit exists, the addition of water either as such, or in the shape of milk or of condensed milk, is very commonly practised, more or less care being taken not to exceed the legalized limit. It is obvious that there is an ample margin of profit for the mixer who starts with Russian butter containing 10% of water and works it up with milk, fresh or condensed, to 16%, all the other milk-constituents, namely, sugar, curd and salt, thus introduced counting as "butter" in the eyes of the law. A very considerable number of butter-factors in London and in other parts of England thus dilute dry butter and consider this a legitimate operation so long as they keep within the legal water-limit. Nay, they may even exceed this, if only they give to their adulterated article a euphonious name, which, while legally notifying the admixture, raises in the mind of the ignorant purchaser the belief that he is purchasing something particularly choice and excellent. "Milk-blended butter," with as much as 24 or more per cent of water and as little as 68% of fat, is still largely sold to purchasers who think that they are obtaining extra value for their money; several attempts to deal with the scandal by legislature having led to no result. The introduction of water into butter is also practised on a large scale in the United States, where a branch of trade in "renovated " butter has sprung up. In the States a considerable quantity of butter is produced by small farmers, and by the time the product comes into the market-the addition of chemical preservatives to prevent decomposition not being permitted-the butter has so much deteriorated in quality that it fetches a very low price. It is bought up by factors, the fat melted out and washed, then again worked up with water and salt, care being generally taken to leave about 16% of water in the product, which finds a ready sale in England. It may here be pointed out that England imports an enormous quantity of butter from the continent of Europe, the colonies, Siberia and America, the imports, less exports, averaging during 1903-1906 no less than 203,300 tons annually, and the total consumption (home produce plus imports) 366,441 tons, the consumption per head of population being 19.2 lb per annum. In butter, as in most other articles of food, adulteration with water is the most common, most profitable, and least risky form of fraud. Great fortunes are thus made out of water.

There is an altogether different class of butter adulteration which concerns itself with the substitution of other fatty matters for the whole or part of the really valuable portion of the butter

fat. Margarine is the legalized and therefore legitimate buttersurrogate, prepared by churning any suitable fat with milk into a cream, solidifying the latter by injection into cold water and working the lumps together, precisely as is done in the case of the churned cream of milk. The substitution of margarine for butter is frequent, in spite of all legal enactments directed against this fraud, the semblance between butter and margarine being so great that a trained palate is necessary to distinguish the two articles. Much more frequent and much more difficult to deal with is the sale of mixtures of butter and of margarine. In order to show the difficulties inherent to this subject, it will be necessary to consider the chemical nature of butter-fat, and to compare it with other fats that may enter into the composition of margarine. Butter-fat is butter freed from water, curd and salt and extraneous matter. Like the greater number of natural fats it consists of a mixture of triglycerides, that is, combinations of glycerin with substances of the nature of acids. These acids, in the case of fats other than butter-fat, are mainly oleic, palmitic and stearic acids. Butter-fat, in addition to these, contains other acids which sharply distinguish it from the vast majority of other fats and, with the exception of cocoa-nut oil, from those substances which are or may be used to mix with butter, by the circumstance that a considerable proportion of its acids, when separated by chemical means from the glycerin, are readily soluble in water, or may be easily volatilized either alone or in a current of steam, whereas the acids separated from the foreign fats are practically both insoluble and non-volatile. This fundamental principle serves at once to distinguish, for example, between butter and margarine, and has been made use of by analysts not only for this purpose but also with a view to determine the relative amounts of butter and margarine in a mixture of these substances. Thus butter-fat contains about 88%, more or less, of "insoluble fatty acids," while margarine contains about 95.5%; 5 grammes of butter-fat when chemically decomposed yield an amount of volatile fatty acids which requires about 26 cubic centimetres (more or less) of deci-normal alkali solution for neutralization, while margarine requires mostly less than 1 cubic centimetre (Wollny or Reichert-Meissl method). There are other differences between the two kinds of fat: the specific gravity of butter-fat is higher than that of most other fats; its power of refracting a ray of light is less; the "iodine absorption" of butter-fat is smaller than that of many other fatty matters, and so on. But the composition of perfectly genuine butter-fat varies within somewhat wide limits. The milk from a cow fed on good and ample food in warm weather yields a fat that is rich in characteristic butter-constituents, while a poorly fed animal, kept in the open till late in the autumn, when the nights are cold, gives milk exceptionally poor in fat, the differences expressed as "insoluble fatty acids" lying between 86 and 91%, and in volatile acids, expressed as "Wollny" numbers, between 18 and 36. Generally, therefore, summer butter is rich and autumn butter poor in volatile acids, or, geographically, Australian butter is more frequently high, Siberian often exceedingly low in these acids. The food of the animal also may, under certain conditions, yield a notable proportion of its fatty matter to the butter; cows that have, for instance, been fed upon large quantities of cotton-seed cake yield butter in which the cotton-seed oil may be traced, and the same holds good with other fatty foods. All these, and other circumstances, combine to render the detection of small quantities of foreign fats that have been fraudulently added to butter almost a matter of impossibility. This is perfectly well known to unscrupulous butter dealers, and an enormous amount of adulteration is known to be practised. Even small amounts of adulteration could, nevertheless, often be discovered while margarine manufacturers employed considerable proportions of vegetable oils in their products, some of these oils furnishing characteristic chemical reactions allowing of their discovery. Here some firms of margarine manufacturers came to the aid of the butter-mixer and produced margarine containing nothing but animal fat, so-called "neutral" margarine being freely offered for fraudulent purposes. There is one fat besides butter

which contains "volatile fatty acids," namely, cocoa-nut oil. Since means have been found to deprive this fat of its strong cocoa-nut odour and taste, it has largely been used in the adulteration of butter, and margarine containing cocoa-nut oil and other fatty substances has freely been manufactured and sold specially for butter adulteration. The seat of this class of fraud is mainly in Holland. Analysts happily found means to detect this oil when present above 10%, and numerous prosecutions made mixers more careful. Abundant evidence, however, exists showing that the simultaneous addition of water or milk so as to keep the water limit below 16% and that of margarine entirely composed of animal fats below 10% leaves a large margin of profit with a very smail chance of detection. For the moment at least analysis has had the worst of it in the battle between honesty and "business methods."

Margarine itself is a legitimate article of commerce (when sold with due notice to the purchaser), but is frequently adulterated. As regards the fats used in its manufacture there does not exist any legal restriction, and as long as the fat is in a state fit for human consumption the manufacturer can make whatever mixture he pleases. In general there is no reason to think that any bad or disgusting fats are finding their way into the factories, which in most countries are under proper supervision; the old stories about recovered grease from all sorts of offal are quite without foundation. But a considerable percentage of solid paraffin has been met with as an admixture of the fatty part of margarine. As the fatty portion of the article is the only one of value, some manufacturers make great efforts to produce margarine with as small a percentage of fatty matter as possible, either by incorporating excessive amounts of water or of milkmargarines with over 30% of water being met with-or by introducing sugar, glucose, starch, gelatinous matter, in fact anything that is cheaper than fat. The English law imposes a limitation upon the percentage of butter-fat that may be contained in margarine, but at present at least the tendency of | manufacturers is all for having as little butter or other valuable fat in margarine as is practicable, and not to err on the other side. For the purpose of facilitating the discovery of margarine when it has been fraudulently added to butter, some countries (Germany, Belgium, Sweden) insist upon the use of from 5 to 10% of sesame oil (from the seed of Sesamum orientale or S. indicum, belonging to the family of Bignoniaceae) in the manufacture of such margarine as is to be consumed within the countries in question. This oil yields a characteristic red colour when it, or any mixture containing it, is shaken with an hydrochloric solution of either sugar or furfurol, and is intended to serve as an "ear-marking" substance. The addition of a little starch or arrowroot, easily discoverable chemically or by the microscope, is also required by Belgium, but in the absence of any international agreement these ear-marking additions are of little practical use. It is, however, interesting to point out that, while complying with the regulations of the governments, margarine manufacturers of the countries named have found an easy way of rendering the regulations quite nugatory: they add methyl-orange, a colouring matter which itself produces a red colour with acid and quite obscures the red colour obtained by the official test for sesame oil.

Cheese may be legitimately made from full-milk, milk that has been enriched by addition of cream, or from milk that has been more or less skimmed. It varies consequently very widely in composition, so-called cream cheese containing not less than 60% of fat; Stilton upwards of 40%; Cheddar about 30%; Dutch, Parmesan and some Swiss and Danish less than 20%. The amount of water varies with the kind and age of the cheese and may be as low as 20 and as high as 60%. Under these circumstances it is impracticable to lay down any hard-and-fast rules as to the composition of cheese. When, however, cheese is made from skimmed milk and the fat is replaced by margarine, as is the case in so-called "filled" or margarine cheeses, the sale of these amounts to an adulteration, unless the presence of the foreign substance is deciared. It may at first sight appear strange that the person who robs milk of its most valuable

met with during recent years is maize-meal in American produce. This is of inferior food value to wheat-meal.

portion, the cream, may prepare a legitimate article of food from | flour, have disappeared. The only admixture which has been the remainder, while he who to that remainder adds something to replace the fat does an illegitimate act, but it must be taken into consideration that the replacement is frequently made with fraudulent intent and that the ordinary purchaser cannot by taste or smell distinguish the adulterated from the genuine article, while there is no difficulty in recognizing skim-milk cheese.

Lard.-Between the years 1880 and 1890 a gigantic fraudulent trade in adulterated lard was carried on from the United States. A great proportion of the American lard imported into England was found to consist of a mixture of more or less real lard with cotton-seed oil and beef-stearine. Cotton-seed oil is one of the cheapest vegetable oils fit for human consumption, beef-stearine the hard residue obtained in the manufacture of oleo-margarine after the more fluid fat has been pressed from the beef fat. These mixtures were made so skilfully by large Chicago manufacturers that for some years they escaped detection. A bill introduced in 1888 into the American Senate to stop this imposture directed general attention to the subject, and energetic measures, taken both in America and in England, quickly put an end to it. From the memorial presented in the United States Senate in support of the bill, it appeared that in about 1887 the annual production of lard in the States was estimated at 600 million pounds, of which more than 35% was adulterated. Compounds were made containing only a small quantity of lard or none at all, yet were sold as choice refined lard or under other eulogistic names. Many lard substitutes, chiefly made from cotton-seed oil, are still met with, but are mostly sold in a legitimate manner. From the germ of maize--which must be separated from the starchy portion of the seed before the latter can be manufactured into glucose-the oil (maize-oil) is expressed, and this now is used as a lard adulterant, its detection being far more difficult than that of cotton-seed oil.

[ocr errors]

Oils. For very many years all oils were considered to be composed of olein, that is to say, the triglyceride of oleic acid, with small quantities of impurities; chemists, therefore, to distinguish oils of various origin, confined themselves to tests for these impurities, employing so-called colour reactions based upon the change of colour of the oil by various reagents such as sulphuric, nitric or phosphoric acids. These reactions were exceedingly indefinite and unsatisfactory and oil adulteration was prevalent and almost undiscoverable. It has been found, however, that the old ideas concerning the believed uniformity in the nature and constitution of oils were erroneous. Some oils, indeed, do consist of olein, almond oil being a type, others contain a glyceride of an acid which is distinguished from oleic acid by containing one molecule less hydrogen, called linoleic acid. To this class belong cotton-seed and sesame oils. Others again include a glyceride of an acid containing still less hydrogen, linolenic acid (linseed and similar drying oils), and lastly the liver oils are still poorer in hydrogen. These various acids or the oils contained in them combine with various percentages of iodine, oleic acid absorbing the smallest proportion (about 80 %). For each oil the iodine absorption is a fairly constant quantity; this number, together with the determination of the amount of caustic alkali needed for complete saponification, the thermal rise with strong sulphuric acid or with bromine, the refraction of light and the specific gravity, now enable the analyst to form a fair idea of the nature of any sample under examination, and, in consequence of this advance in knowledge, adulteration of oils has much declined. The most common adulterant of the more valuable oils, like olive oil, is cotton-seed oil. The oils expressed from the sesame seed or the earth-nut (arachis oil) are also frequently admixed with olive oil. Almond oil is adulterated with the closely allied oils from the peach-kernel or the pine-seed. Deodorized paraffin hydrocarbons also enter sometimes as adulterants into edible oils. There is, however, a marked improvement in the purity of oils generally. Flour and bread as sold in England are almost invariably genuine. The old forms of adulteration, such as the use of alum for the production of a white but indigestible loaf from bad

Sugar in its various forms can hardly be said to be subject to adulteration by the addition of inferior substitutes. One single case of such substitution analogous to the proverbial but probably mythical sanding of sugar occurred between 1880 and 1905 in England, some crushed marble having been found in a consignment of German sugar in a large British establishment. There have, however, been numerous prosecutions for a fraud of another class, namely, the substitution of dyed beetroot sugar for Demerara sugar. Formerly the sugar produced by the old imperfect and wasteful methods of manufacture was more or less yellow or brown from adhering molasses. Sugar, as now obtained, be it from cane or beet, is white; yet the public is so wedded to its customs that white sugar except as lump or castor sugar does not find a ready sale. The manufacturer is obliged to colour his product yellow by artificial means, that is to say, either by the addition of a little aniline dye, harmless in itself, or, as in the West Indies, mostly by the use of a small quantity of chloride of tin, so-called "bloomer. " European refined beetsugar coloured with aniline dye to distinguish it from Demerara cane sugar is sold under the name of " yellow crystals. These, although richer in real sugar than Demerara, are without the delicious aroma of cane syrup which belongs to the latter, and are not infrequently fraudulently substituted for Demerara.

[ocr errors]

Marmalade and Jams.-In the preparation of marmalade and jams, which articles were for a long time made from fruit and sugar only, a part of the sugar, from 10 to 15 %, is often now replaced by starch glucose. This material, consisting mainly of a mixture of dextrose and dextrin, is of much less sweetening power than ordinary sugar and mostly cheaper. It is said to prevent the crystallization which frequently used to occur in some jams. The use of glucose has been declared by the High Court (Smith v. Wisden, 1901) to be legitimate, the court holding that as there was no recognized standard for the composition of marmalade the addition of saccharine material not injurious to health could not constitute an offence. Artificial colouring matters and chemical preservatives are almost constant ingredients of jams. To such fruits which, when boiled with sugar, do not readily yield a jelly (strawberries, raspberries) an addition of apple juice is frequently made in the manufacture of jam, without much objection; the pulp of the apple, however, is sometimes bodily added as an adulterant.

Tea. In consequence of the proviso contained in the Food Act of 1875 that tea was to be examined by the Customs on importation, such tea as was found to be admixed with other substance or exhausted tea being refused entry into England, the adulteration of tea has been virtually suppressed. Great numbers of samples are annually examined by the Customs, and a not inconsiderable proportion of these are condemned because they are either damaged or dirty, their use for the manufacture of theine being permitted, only sound and genuine tea coming to the British public. The practice, very common a generation ago, of artificially colouring tea green with a mixture of Prussian blue and turmeric, has quite vanished with the decline of the consumption of green tea.

Coffee. A few cases of artificially manufactured coffee berries, made from flour and chicory, have been observed, but it would not be fair to speak of a practice of adulteration regarding coffee berries. Not infrequently coffee is roasted with the addition of some fatty matter or paraffin or sugar, to give to the roasted coffee a glossy appearance. These additions as a rule are small in amount. Ground coffee is often sold adulterated with chicory, sugar or caramel. Other adulterations, reference to which is found in literature relating to the second half of the 19th century, do not seem now to occur.

Cocoa and chocolate are liable to a number of fraudulent or questionable additions. In the cheaper qualities of cocoa-powder sugar and starch-the latter in the form of sago flour or arrowroot-are admixed in very large proportions, and, in order to give to such mixtures something like the appearance of genuine

of a sample thereof shall be found to contain more than 2% of proof spirit." That is to say, beer is legally anything that is sold as beer provided that it has 2% of proof spirit. There is not any restriction upon the materials that are employed provided that they are not positively poisonous. For Inland Revenue purposes, however, a prohibition has been made against the admixture of anything to beer after it has been manufactured, and excise prosecutions of publicans for watering beer are not infrequent. Formerly there was a restriction on the amount of salt that might be present in beer; this no longer exists. On the other hand it cannot be said that any injurious materials are being used by brewers, the brewing industry being, broadly speaking, most efficiently supervised and controlled by scientifically trained men. The addition to beer of bisulphate of lime, which is almost universally practised in England, is not an adulteration in the ordinary acceptation of the term. The thin beer which has taken the place of the strong ales of the past generation contains an insufficiency of alcohol to ensure keeping qualities, and it is difficult to see how modern English beers could be sold without the addition of some sort of preservative.

cocoa, red oxide of iron is added. This almost invariably is more | scription of beer, or as a substitute for beer, and which on analysis or less arsenical. Cocoa-shell, a perfectly valueless material, is mixed in a very finely ground state with cocoa of the commoner kind. Owing to the enormous increase in the consumption of socalled chocolate-creams, which are masses of sugar confectionery coated with a cocoa-paste containing a large proportion of the fat of cocoa (cocoa-butter), the quantity of cocoa-butter that is obtained in the manufacture of cocoa-powders is no longer sufficient to cover the demand. Substitutes of cocoa-butter prepared from cocoa-nut oil are manufactured on a large scale, and all enter without acknowledgment into chocolates or chocolate creams. As there are not any regulations touching the composition of chocolate, sugar or starch or both are used in chocolate manufacture, and especially in that of chocolate powders in often excessive quantities. In the Dutch mode of manufacture of cocoa-powders an addition of from 3% to 4% of an alkaline salt is made for the purpose of rendering the cocoa "soluble," or, more strictly, for putting it into such a physical condition that it does not settle in the cup. This addition does not, as is often alleged, render the cocoa alkaline, and is not made with any fraudulent object; several countries, however, have passed regulations fixing the maximum of the addition which may thus legitimately be made. Most of the cocoapowders sold in England are prepared in accordance with the Dutch method.

Wine. If under this term a beverage is understood which consists of nothing but fermented grape juice, a great proportion of the wine consumed in England is not genuine wine. All port and sherry comes into commerce after having received an addition of spirit, generally made from potatoes; port and sherry would not be what they are and as they have been for generations unless they were thus fortified. The practice can now hardly be classed among adulterations. A well-fermented wine made from the juice of properly matured grapes does not require any added alcohol in order that it should keep; imperfectly made wine is liable to turn sour; the addition of alcohol prevents this. French wines, both red and white, are hardly subject to adulteration. In wine-growing countries like France wine is so cheap and plentiful that it would be difficult to manufacture an imitation beverage cheaper than genuine wine. In Germany the conditions are different, the districts from which those wines that are exported are nominally derived being small and insufficient to cover the world's demands. The addition of sugar solution or of starch sugar is allowed within limits by German law, which not even requires that notification to the purchaser be made of the addition, and it is notorious that a very large proportion of the wine sold under the name of "hock and some of that coming from the Moselle are thus diluted, sugared and lengthened, or, in plain terms, adulterated. Wines from the Palatinate which under their own names would not sell out of Germany are often passed off as hocks. As there is but little German red wine the law also permits this to be lengthened by the addition of white wine. For the removal of part of the acid from sour wine produced in bad vintages the addition of precipitated chalk is also permitted. Attention has been drawn in England to the very serious fact that German wines sometimes contain salts of zinc in small quantities. These are introduced by a fining agent protected by a German patent, consisting of solutions of sulphate of zinc and potassium ferrocyanide, which, when added together in "suitable proportions," produce a precipitate of zinc-ferrocyanide which carries down all turbidity in the wine and is supposed to leave neither zinc nor ferrocyanide behind in solution. As a matter of fact, one or other of these highly objectionable substances is almost invariably left behind. The use of artificial colouring matters in wines does not appear now to occur.

[ocr errors]

Beer cannot be said to be adulterated, although it is well known that materials often very different from these which the general public believe to be the proper raw materials for the manufacture of beer, namely, water, malt and hops, are largely used. By the Customs and Inland Revenue Act 1885, sec. 4, beer is defined as any liquor "which is made or sold as a de

[ocr errors]

Non-Alcoholic Drinks.--The same remark applies to a good many of so-called temperance beverages. Of these again it is hardly proper to speak as liable to adulteration. So-called sodawater is very often devoid of soda and is only carbonated water, but the term "soda-water" is a survival from the times when this was a medicinal beverage and when soda was prescribed to be present in definite amount by the pharmacopoeia. Potash and especially lithia waters very frequently contain only mere traces of the substances from which they derive their names. The sweetness of ginger-beer and often of lemonade is no longer due to sugar, as used to be the case, but to saccharine (the toluol derivative), which is possessed of sweetness but not of nourishment; and since, as an antiseptic, it may affect the digestion, its use in these beverages is to be deprecated.

Vinegar ought to be the product obtained by the successive alcoholic and acetous fermentation of a sugary liquor. When this is obtained from malt or from malt admixed with other grain the vinegar is called a malt vinegar. Often, however, acid liquors pass under that name which have been made by the action of a mineral acid upon any starchy material such as maize or tapioca, with or without the addition of beet sugar. Dilute acetic acid, obtained from wood, is very frequently used as an adulterant of vinegar. When properly purified such acid is unobjectionable physiologically, but it is improper to sell it as vinegar. Adulteration of vinegar by sulphuric or other acids, formerly a common practice, is now exceedingly rare.

Spirits. By the Sale of Food and Drugs Act Amendment Act, whisky, brandy and rum must not be sold of a less alcoholic strength than 25 under proof (corresponding to 43% of alcohol by volume), and gin 35 under proof (37% alcohol). For many years the only form of adulteration recorded by public analysts related to the alcoholic strength, the undue dilution of spirits with water being, of course, a profitable form of fraud. No addition of any injurious matters to commercial spirits has been observed. It was, however, well known that a very considerable proportion of so-called brandies was not the product of the grape, but that spirits of other origin were frequently admixed with grape brandy. A report which appeared in 1902 in the Lancet on " Brandy, its production at Cognac and the supply of genuine brandy to this country," served as a stimulus to public analysts to analyse commercial brandies, and convictions of retailers for selling so-called brandy followed. It was shown that genuine brandy made in the orthodox style from wine in pot-stills contained a considerable proportion of substances other than alcohol to which the flavour and character of brandy is due; among these flavouring materials combinations of a variety of organic acids with alcohols (chemically described as "esters") predominate. For the present a brandy is not considered genuine unless it contains in 100,000 parts (calculated free from water) at least 60 parts of “ esters. As a consequence a trade has sprung up in artificially produced esters, sold for the purpose of

[ocr errors]
« السابقةمتابعة »